DOI: http://dx.doi.org/10.18782/2320-7051.6698

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **6 (4):** 169-173 (2018)

Research Article

Effect of NPK on Growth Parameters of Ash Gourd (Benincasa hispida) (Thumb.) (cogn.)

Anitha P.* and Saravanan S.

Department of Horticulture, Allahabad School of Agriculture, Sam Higginbottom Institute of Agriculture, Technology and Sciences. Allahabad-211007 (U.P.) *Corresponding Author E-mail: anitha pathlavath@gmail.com Received: 6.07.2018 | Revised: 13.08.2018 | Accepted: 18.08.2018

ABSTRACT

A field experiment was conducted during Rabi season 2015-16 at vegetable research field, Department of Horticulture, Allahabad School of Agriculture, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad. The experiment was laid out in a Randomized Block Design (RBD) with 13 treatments and each replicated thrice. The result revealed that T_6 (150 kg N ha⁻¹) recorded the maximum vine length (214.29 cm), maximum no of branches (10.33) minimum days (49.33) to earliest flowering. Maximum length of the lateral Branch (117.69 cm) and was recorded with T_7 (100N+100P+100K) through FYM 50 % NPK in the form of Urea, SSP, MOP. T_{10} (150N+75P+100K) recorded minimum days (59.00) required from sowing to first female flower appearance and minimum node number (4.33) at which male flower appears was recorded with the same treatment. T_1 (100N+150P+100K) recorded the minimum node number at which female flower appears is (7.33).

Key words: Ash gourd, Growth, NPK,

INTRODUCTION

Among the Vegetables crops Cucurbitaceous is the biggest family, in which Ash gourd is one of the important crop. Ash gourd is also known with other Names like winter melon. wax gourd, Petha in Hindi Boodidagummadikai in Telugu ,and Pushnikai in Tamil cosmopolitan is a cucurbitaceous vegetable grown successfully in tropical and subtropical regions of the world. It is a highly cross-pollinated crop due to its monecious and andromonecious nature and wide genetic diversity. Being a cross pollinated crop , it has wide range of variability for maturity , yield and fruit characters like shape and size. It is a warm season vegetable, which thrives well in warm and humid climate but it can be grown throughout North India as off season vegetable. In India the Ash gourd is offered to the gods in religious ceremonies. It is also considered to be effective in warding off evil spirit and the evil eye. Hence it is hung outside newly constructed homes and buildings.

Cite this article: Anitha, P. and Saravanan, S., Effect of NPK on Growth parameters of Ash Gourd (*Benincasa hispida*) (Thumb.) (cogn.), *Int. J. Pure App. Biosci.* **6**(4): 169-173 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6698

Int. J. Pure App. Biosci. 6 (4): 169-173 (2018)

ISSN: 2320 - 7051

The major producing countries of Ash gourd in the world are India, Bangladesh, Indonesia, Brazil China, Nigeria .India is the second largest producer of Ash gourd after China. In India it is extensively grown in UP, Tamilnadu, Andrapradesh. It is cultivated almost throughout the year in an area of 117 ha with a production of 2783 with a productivity of 10.2 tones /ha.

MATERIAL AND METHODS

The present investigation Effect of NPK on plant growth Parameters of, Ash gourd (*Benincasa hispida*) was conducted with 13 treatments with three replications adopting Randomized Block Design (RBD). The experiment was carried out at Vegetable Research Field, Department of Horticulture, Allahabad School of Agriculture, Sam Higgin

Agriculture Bottom Institute of and Technology and Science, Allahabad (U.P.) The soil of the experimental field was sandy loam in texture, poor in Nitrogen, comparatively rich in Phosphorous and medium in Potash with slightly alkaline reaction.

About 250 to 300 quintals of farmyard manure (FYM) was added at the time of field preparation and in addition to it 60 kg Nitrogen(N), 80 kg Phosphorus(P_2O_5) and 60 kg Potash(K_2O) per hectare were added through chemical fertilizers. Half dose of Nitrogen and full dose of Phosphorus and Potash were given at the time of sowing. Rest half dose of Nitrogen will be given by top dressing in two splits of doses, first at 25 days after sowing and second at flowering stage

Treatment details:								
	Treatment							
S.No	symbol	Treatment combination						
1	T _o	Control(100%RDF(NPK)						
2	T_1	100 N+150 P+100K						
3	T ₂	125N+75 P+125K						
4	T ₃	150N+100P+150K						
5	T_4	170N+120P+170K						
6	T ₅	110N+100P+110K						
7	T ₆	150N +100P+150K						
8	T_7	170N+120P+170K						
9	T ₈	100N+100P+100K						
10	T ₉	150N+80P+80K						
11	T ₁₀	120N+60P+90K						
12	T ₁₁	120N+80P+100K						
13	T ₁₂	110N+70K+80K						

Observations were recorded for following characters Growth Parameters like Vine length (cm), Number of branches, Length of lateral branch (cm), Flowering parameters like Days to appearance of first male flower, Days to appearance of first female flower, Node number at which first male flower appear, Node number at which first female flower appear.

RESULTS AND DISCUSSION

Observations are recorded for the following growth parameters

1) Growth parameters-vine length (cm), Number of branches, Length of lateral branch (cm)

2) Flowering parameters- Days to appearance of first male flower, Days to appearance of first female flower, Node Number at which first male flower appears, Node number at which first female flower appears

Growth parameters

The vine length of Ash gourd recorded under different treatments and their combinations is presented in (Table 2). The data contained in

Copyright © July-August, 2018; IJPAB

Int. J. Pure App. Biosci. 6 (4): 169-173 (2018)

the table reveals that the vine length was significantly influenced by different levels of Nitrogen, Phosphorus, and their interaction. T_6 (150 kg N ha⁻¹) recorded the maximum vine length (214.29 cm) which was significantly superior through urea SSP, MOP and followed by (167.34 cm) with T_3 (150 kg N Urea ,SSP,MOP ha⁻¹) through +poultry Manure @ 1.25 t /ha and T_{12} (110 kg N ha⁻¹) (164.28 cm) and the minimum was found with T_0 (140.23 cm) (0 kg N ha⁻¹). Nitrogen increases vigour of the plant and assimilating area. Phosphorus is an equally essential nutrient as a constituent of nucleoproteins, enzymes and high energy bonds. Higher vine length with 150 kg N ha⁻¹ + 100 kg P ha⁻¹ may be attributable to these factors. These results are in conformity with the finding of Umamaheshwarappa *et al.*¹⁷.

The maximum in number of branches was recorded in T_6 (150N+100P+150K) (10.33) through urea, SSP, MOP, followed by T_8 (150N+80P+80K(9.33) through Urea, SSP,\$MOP and T₉ (120N+60P+90P) (9.00) while the minimum no of branches was recorded in T₄ (170N+120P+170K) (4.33) (Table through 2) poultry manure @1.0t/ha.which is due to incorporation of organic manure with Nitrogen fertilizer of recommended dose of inorganic fertilizer, the similar findings has been reported by Mujagid et al., and Vadiraj et al., in Brinjal

Maximum length of the lateral Branch (117.69)cm) was recorded with T_7 (100N+100P+100K) through FYM 50 % NPK in the form of Urea, SSP, MOP which was significantly superior followed by T₂ (115.00) (125N+75P+125K) through FYM, Urea, SSP, MOP and the minimum (107.16cm) (Table 2) remained with T_0 (000N+000P+000K) .Kg P ha⁻¹). Similar results was notice in Bano and Kale, in Brinjal **Flowering parameters:**

Days to first male flower opening were largely influenced by different fertilizer treatment, the fertilizer treatment significantly decreased the number of days to appearance of male flower Application of Nitrogen up to the highest dose of 150 kg N/ha had led to decrease the number of days for appearance of male flower

Minimum days (49.33) to earliest flowering was recorded with T_6 (150N+100P+150k) through application of Nitrogen Which was significantly superior followed by T_7 (100N+100P+100K) (49.67) and T_8 (150N+80P+100K), whereas, T_0 (0 kg N ha⁻¹) recorded maximum days (53.67) (Table 2) to first male flower appearance were noted under application of FYM and Urea Similar results was found with swaider *et al*⁴.,

Minimum days required from sowing to first female flower appearance was recorded with T_{10} (150N+75P+100K) (59.00) through application of Nitrogen in form of urea Followed by T_6 (150 kg N ha⁻¹) (60.00.) Whereas, treatment combination T_0 R₁ (control) recorded maximum days (74.33) (Table 2) for appearance of first female flower under the application of FYM and N. First female flower appearance was with higher levels of Nitrogen and Phosphorus seems to have been advanced due to better availability of nutrients to the plants. Similar results was found with swaider *et al*⁴.,

The minimum node number at which male flower appears is T_{10} (150N+75P+100K) through Urea, SSP, MOP (4.33) and followed by T_2 (125N+75P+125K) (4.67) through Urea, SSP, MOP respectively .while the Maximum Node number at which the first male flower appears is T_{12} (8.33) 50 % NPK through the urea SSP and MOP (Table 2)

The minimum node number at which flower appears is T_1 female (100N+150P+100K) (7.33)through application of Nitrogen in the form of urea and followed T_8 (150N+80P+80K) (8.67)respectively .while the Maximum Node number at which the first male flower appears is T₁₂ (110N+70P+800P) (13.67) (Table 2) through the application of SSP, MOP and Urea.

Int. J. Pure App. Biosci. 6 (4): 169-173 (2018)

Treatment Combinations	Vine length (cms)			branc bes	lateral	Days to appearance of first flower		Node number of first flower	
	30 Days	60 Days	90 Days	per plant	branches	Male	Female	Male	Female
T0 (000N+000P+000K)	16.40	98.33	140.23	8.33	107.16	53.67	74.33	5.33	11.00
T1 (100N+150P+100K)	16.60	98.67	155.70	4.67	113.16	51.67	66.33	5.00	7.33
T2 (125N+75P+125K)	20.05	97.67	145.39	6.67	115.00	51.00	63.67	4.67	9.33
T3 (150N+100P+150K)	19.32	91.87	167.34	8.67	114.67	48.67	60.33	6.33	10.00
T4 (170N+120P+170K)	17.00	94.67	154.90	4.33	113.31	51.33	67.33	5.00	9.33
T5 (110N+100P+110K)	16.93	102.07	150.14	6.67	107.26	50.00	63.00	5.33	9.67
T6 (150N+100P+150K)	17.20	99.53	214.29	10.33	110.33	49.33	60.00	5.33	10.00
T7 (100N+100P+100K)	16.67	94.93	158.93	9.00	117.69	49.67	68.00	6.67	11.67
T8 (150N+80P+80K)	15.93	93.13	159.18	9.33	111.73	49.67	63.00	5.33	8.67
T9 (120N+60P+90K)	16.53	93.33	150.84	9.00	107.29	53.33	66.67	6.00	10.00
T10 (150N+75P+100K)	18.07	90.87	143.95	5.00	108.00	51.00	59.00	4.33	10.33
T11 (120N+80P+100K)	16.73	111.55	156.27	6.33	108.58	54.00	63.00	6.00	9.33
T12 (110N+70P+80K)	17.82	97.53	164.28	5.67	113.91	5300	66.33	8.33	13.67
F-test	S	S	S	S	S	S	S	S	S
C.D. (0.05%)	2.170	8.922	25.084	3.654	6.671	3.314	7.973	1.986	2.764
S.Ed(<u>+</u>)	1.051	4.323	12.154	1.770	3.232	1.606	3.863	0.962	1.339

Table: 2

CONCLUSION

On the basis of research findings it may be concluded that treatment (T₆) (Farm Yard manure) (150N:100P:150K) was found to be most suitable treatment combination in respect of growth parameters. However these results are based on one year experiment. Therefore, it should be repeated to substantiate the finding.

Acknowledgement

Authors are greatly thankful to the Head Dept science \$ Dept of Forestry of soil \$Environmental science to provide required related information to soil \$ environment. Authors also greatly privileged to Dept of Horticulture to provide all essential facilities \$ moral support throughout the whole research work

REFERENCES

1. Hafiz, M.M and Mohmoud, A.R., Response of squash (Cucurbita pepo L.) to Nitrogen source, Nitrogen level and biofertilizer application. Annals of Agri. Sci., Moshtohor 41(1): 283-298 (2003).

Copyright © July-August, 2018; IJPAB

- 2. Kirnak, H., David, H., Kavya, C. and Tas I., Effects of Irrigation and Nitrogen Rates on Growth of Muskmelon in Semiarid Regions. J. Plant Nutrition. 28: 621-638 (2005).
- 3. Maurya, K.R., Barooah S., Bhattacharya R.K., and Go swami R.K., Standardization of male plant population in Pointed gourd. Ann. Agri. Sci. 30: 1405–1411 (1985).
- 4. Swaider et al., Studies on the absorption of Nutrient elements in muskmelon on Nitrogen, Phosphorus levels. J. Hort. Ass. Japan, 29: 12-20 (1988) (1960).
- 5. Pandey, R. P. and Singh K., Note on the effect of Nitrogen and maleic hydrazide on sex expression, Sex ratio and yield of Bottle gourd. Indian J. Agri. Sci. 43(3): 882-883 (2005),
- 6. Patil, S.D., Keskar, B.G. and Lawande, K.E., Effect of varying levels of N, P and K on growth cucumber (Cucumis sativus L.) cv. Himangi. J. soils and crops, 8(1): 11-15 (1998).
- 7. Patil, S.R., Effect of graded levels of Nitrogen, Phosphorus on growth, fruiting 172

and yield of Bottle gourd cv. Samrat, M.sc. (Agri.) Thesis submitted to M.P.K.V., Rahuri (Unpublished). (1993).

- Reddy, P. K. and Rao, P. V., Growth and yield of Bitter gourd (*Momordica charantia* L.) as influenced by vermicompost and Nitrogen management practices. *Res. ANGRAU.* 32(3): 15-20 4 refs. (2004).
- Seshadri, V.S. and shinde, N.N., Proc. 15th international Congress of Genetics, Part 2: 562-613 (1983).
- Shekhargouda, S. T., Reddy M., Merwade B. S., Mulge M. N. Ravindra, Kukanoor Laxman, Influence of NPK on growth and seed yield in Bitter gourd (Momordica charantia L.). *Asian Hort.* 2(1/2): 40-44 8 ref (2005/2006).
- Singh S., Hoods, R.S. and Singh, S., Effect of micro nutrient on growth, yield of Musk melon. *India, Agri. Sci. Digest-Kernal*, 12(4): 196-198 (1992).
- Singh, D.N. and Chhonkar, B.S., Effect of Nitrogen, Phosphorus, Potassium and spacing on growth and yield of Muskmelon (*Cucumis melo* L.). *Indian J. Hort.* 43(3/4): 256-269 (1986).
- 13. Singh, K. P. and Krishna Mohan, Integrated Nutrient management for

sustainable production of Pointed gourd (*Trichosanthes dioica* Roxb.) under Ganga diara of Bihar. *Asian Hort.* **2(1):** pp. 99-101 (2007).

- 14. Singh, K. P., Krishna Mohan and Mandal, G., Studies on the varietal performance of Pointed gourd (*Trichosanthes dioica* Roxb.) in Ganga Diara of Bihar, India. *Asian Horti.* 2(2): 110-112 (2007).
- Singh, M. K., Chaturvedi, G. S., Singh, A. K. and Singh, B. B., Effect of plant growth regulators on quality parameters of pointed gourd. Plant Physiology. **19(1):** 17-21 19 ref. (2003).
- Singh, M. K., Chaturvedi, G. S., Singh, A. K., Singh, A. and Singh, B. B., Effect of plant growth regulators on quality parameters of Pointed gourd. Annuals of Plant Physiology. **19(1):** 17-21 19 ref. (2005).
- Umamaheswarappa., Growth, yield and quality of cucumber (Cucumis sativus L.) as influenced by varying levels of Nitrogen, Phosphorus and Potassium. *Karnataka Hort.* 1(4): 71-77 10 refs. (2005).